A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study.
نویسندگان
چکیده
In this work, a bone damage resorption finite element model based on the disruption of the inhibitory signal transmitted between osteocytes cells in bone due to damage accumulation is developed and discussed. A strain-based stimulus function coupled to a damage-dependent spatial function is proposed to represent the connection between two osteocytes embedded in the bone tissue. The signal is transmitted to the bone surface to activate bone resorption. The proposed model is based on the idea that the osteocyte signal reduction is not related to the reduction of the stimulus sensed locally by osteocytes due to damage, but to the difficulties for the signal in travelling along a disrupted area due to microcracks that can destroy connections of the intercellular network between osteocytes and bone-lining cells. To check the potential of the proposed model to predict the damage resorption process, two bone resorption mechano-regulation rules corresponding to two mechanotransduction approaches have been implemented and tested: (1) Bone resorption based on a coupled strain-damage stimulus function without ruptured osteocyte connections (NROC); and (2) Bone resorption based on a strain stimulus function with ruptured osteocyte connections (ROC). The comparison between the results obtained by both models, shows that the proposed model based on ruptured osteocytes connections predicts realistic results in conformity with previously published findings concerning the fatigue damage repair in bone.
منابع مشابه
Post-Tensioned Steel Connections Self-Centering Behavior Using the Finite Element Method
Due to lack of the proper and well behavior of steel moment-resisting connections subjected to the great and major earthquakes, excessive researches have been conducted to mitigate the damages on the primary elements and connections. Therefore, elimination of residual drift and increasing the plastic rotation capacity for the connectors in the panel zone are required. The main purpose of this s...
متن کاملUsing the Finite Element Analysis Method to Study the 3-point Bending Test for the Characterization of the Adherence
An elastic finite element analysis was conducted to evaluate the stress distribution in the initiation zone of the adhesive rupture during the 3-point bending test. This test is used to measure the adherence between a polyepoxy adhesive and aluminum alloy with different surface treatments. The purpose is to compare, in the high stress concentration areas, the stress fields calculated using fini...
متن کاملThe axisymmetric computational study of a femoral component to analysis the effect of titanium alloy and diameter variation.
This work presents a numerical approach in order to predict the influence of implant material stiffness in a femoral component design when submitted in compression. The implant success depends on the transferred load to the neighboring bone. The finite element method can be used to analysis the stress and strain distribution in the femoral component allowing to improve the implant selection. Fo...
متن کاملEffect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis
This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...
متن کاملFinite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical biosciences
دوره 262 شماره
صفحات -
تاریخ انتشار 2015